Propagation in Hamiltonian Dynamics and Relative Symplectic Homology Paul Biran, Leonid Polterovich, and Dietmar Salamon
نویسنده
چکیده
1.1. Stable propagation. Let M := UT be the open unit cotangent bundle of the n-dimensional Euclidean torus T = R/Z. We express the elements of M in terms of the canonical coordinates (q1, . . . , qn, p1, . . . , pn), where qi ≡ qi + 1. Thus we identify M with T × D, where D = {|p| < 1} is the open unit ball in R and |v| stands for the Euclidean norm of a vector v ∈ R. Consider the space H of all smooth compactly supported functions on [0, 1]×M . Every function H ∈ H gives rise to the Hamiltonian system on M
منابع مشابه
Non-contractible periodic orbits of Hamiltonian flows on twisted cotangent bundles
For many classes of symplectic manifolds, the Hamiltonian flow of a function with sufficiently large variation must have a fast periodic orbit. This principle is the base of the notion of Hofer-Zehnder capacity and some other symplectic invariants and leads to numerous results concerning existence of periodic orbits of Hamiltonian flows. Along these lines, we show that given a negatively curved...
متن کاملLoops of Lagrangian submanifolds and pseudoholomorphic discs
The main theorem of this paper asserts that the inclusion of the space of projective Lagrangian planes into the space of Lagrangian submanifolds of complex projective space induces an injective homomorphism of fundamental groups. We introduce three invariants of exact loops of Lagrangian submanifolds that are modelled on invariants introduced by Polterovich for loops of Hamiltonian symplectomor...
متن کاملNoncontractible periodic orbits in cotangent bundles and Floer homology
For every nontrivial free homotopy class α of loops in any closed connected Riemannian manifold, we prove existence of a noncontractible 1periodic orbit for every compactly supported time-dependent Hamiltonian on the open unit cotangent bundle whenever it is sufficiently large over the zero section. The proof shows that the Biran-Polterovich-Salamon capacity is finite for every closed connected...
متن کاملJ -holomorphic curves, moment maps, and invariants of Hamiltonian group actions
3 Invariants of Hamiltonian group actions 17 3.1 An action functional . . . . . . . . . . . . . . . . . . . . . . . 17 3.2 Symplectic reduction . . . . . . . . . . . . . . . . . . . . . . . 19 3.3 Hamiltonian perturbations . . . . . . . . . . . . . . . . . . . . 24 3.4 Moduli spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.5 Fredholm theory . . . . . . . . . . . . . . . . . . ...
متن کاملSe p 19 99 J - holomorphic curves , moment maps , and invariants of Hamiltonian group actions
3 Invariants of Hamiltonian group actions 17 3.1 An action functional . . . . . . . . . . . . . . . . . . . . . . . 17 3.2 Symplectic reduction . . . . . . . . . . . . . . . . . . . . . . . 19 3.3 Hamiltonian perturbations . . . . . . . . . . . . . . . . . . . . 24 3.4 Moduli spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.5 Fredholm theory . . . . . . . . . . . . . . . . . . ...
متن کامل